Convergence Time to Equilibrium for Multi-particle Markov Chains
نویسنده
چکیده
Multi-particle Markov chains L(N) are stochastic systems consisting of M(N) noninteract-ing particles moving according to the law of some \one-particle" nite Markov chain K(N). Our goal is to nd the convergence time to equilibrium T(N) 1, 2] for the sequence of Markov chains L(N) in the situation when the number of particles M(N) tends to innnity and the \size" of the one-particle chain K(N) grows. We consider wide classes of models and nd T(N) for them as a function of M(N) and T K (N), where T K (N) is the convergence time to equilibrium for the sequence of one-particle chains K(N). We apply these results to a discrete analogue of some queueing system and to a random walk on circle. Le temps de convergence a l' equilibre dans les cha ^ ines Markoviennes a plusieurs particules A. D. Manita R esum e On consid ere des cha ^ ines Markoviennes L(N) qui sont des syst emes stochastiques de M(N) particules sans interaction. Chaque particule se d eplace selon la loie d'une cha ^ ine Markovienne nie K(N). Le but du travail est de trouver le temps de convergence a l' equilibre T(N) 1, 2] de la suite des syst emes L(N). On suppose que le nombre de particules M(N) tend vers l'innni et que la dimension de la cha ^ ine K(N) a une particule s'accro ^ it avec N. De larges classes de mod eles sont d ecrites, T(N) est trouv e en tant que la fonction de M(N) et de T K (N), o u T K (N) est le temps de convergence a l' equilibre de la suite des cha ^ ines K(N) a une particule. On etudie, comme examples, une analogue discr ete d'un syst eme des les d'attente et des marches al eatoires sur la circonf erence.. .
منابع مشابه
Some universal estimates on convergence to equilibrium in reversible Markov chains∗
We obtain universal estimates on the convergence to equilibrium and the times of coupling for continuous time irreducible reversible finite-state Markov chains, both in the total variation and in the L norms. The estimates in total variation norm are obtained using a novel identity relating the convergence to equilibrium of a reversible Markov chain to the increase in the entropy of its one-dim...
متن کاملConvergence Time to Equilibrium for Large Nite Markov Chains
For a sequence of nite Markov chains L(N) we introduce the notion of \conver-gence time to equilibrium" T(N). For sequences that are obtained by truncating some countable Markov chain L we nd the convergence time to equilibrium in terms of Lyapunov function of Markov chain L. We apply this result to queue-ing systems with a limited number of customers: a priority system with several customer ty...
متن کاملBounds on the L2 Spectrum for Markov Chains and Markov Processes: a Generalization of Cheeger's Inequality
We prove a general version of Cheeger's inequality for discretetime Markov chains and continuous-time Markovian jump processes, both reversible and nonreversible, with general state space. We also prove a version of Cheeger's inequality for Markov chains and processes with killing. As an application, we prove L2 exponential convergence to equilibrium for random walk with inward drift on a class...
متن کاملUniform Ergodicity of the Iterated Conditional SMC and Geometric Ergodicity of Particle Gibbs samplers
We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers [1]. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC M...
متن کامل098418 PROBABILITY AND STOCHASTIC PROCESSES Large Scale Dynamics of Interacting Particles
Principal references for the main body of the course are lecture notes [6, 1] and monographs [2, 5]. First several weeks, however, will be devoted to a preliminary material including: (1) Stochastic calculus of continuous time Markov chains [4]. (2) Elements of interacting particle systems [3]. I shall assume some elementary knowledge of Probability theory, specifically basic fact about marting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997